⚠️ ⚠️ ⚠️ Attention ! Faute de forces bénévoles suffisantes, NosSénateurs.fr ne peut plus être maintenu à ce jour. Le site ne reflète donc plus la réalité de l'activité des sénateurs depuis plusieurs mois.

Intervention de Dominique Gillot

Office parlementaire d'évaluation des choix scientifiques et technologiques — Réunion du 14 mars 2017 à 16h40
Intelligence artificielle — Présentation du rapport

Photo de Dominique GillotDominique Gillot, sénatrice, rapporteure :

Monsieur le président a mentionné nos critiques sur la SNR. Nous n'avons certes pas été complaisants sur sa mise en oeuvre. Il est vrai aussi que le pilotage est difficile en pareille phase de mutation, quand ce qui a été décidé il y a trois ans est déjà à revoir... D'où l'intérêt des focus que l'OPECST publie.

Je m'associe bien sûr aux propos tenus sur Jean-Claude Etienne : agrégés de sciences ou non, nous cherchons, comme parlementaires, à comprendre le monde et à éclairer nos décisions. Ce qui m'amène naturellement à la présentation de notre rapport...

L'OPECST a été saisi le 29 février 2016, par la commission des affaires économiques du Sénat, d'une étude sur l'intelligence artificielle (IA). Nous sommes fiers d'en avoir été, M. Claude de Ganay et moi-même, les rapporteurs. Un bouleversement pourrait transformer profondément nos sociétés : les technologies d'intelligence artificielle. Elles pourront apporter dans notre futur des progrès dans de nombreux domaines, or elles ne font pas l'objet d'une analyse sereine et objective. L'intelligence artificielle suscite en effet enthousiasme, espoir et intérêt mais aussi méfiance, incrédulité ou oppositions.

L'irruption de l'intelligence artificielle au coeur du débat public remonte à un peu plus de deux ans, après la diffusion d'une lettre d'avertissement sur les dangers potentiels de l'intelligence artificielle, publiée en janvier 2015, qui a recueilli plus de 5 000 signatures en un an. Elle a été lancée pour alerter l'opinion publique et insister sur l'urgence de définir des règles éthiques, afin de cadrer la recherche.

Aucun argument sérieux ne venait étayer cette première mise en garde quant au risque présumé de dérive malveillante ! Pourtant, cette alerte a contribué à renforcer les peurs et les angoisses face aux technologies d'intelligence artificielle.

Notons que 2016 a fait figure d'année de l'intelligence artificielle : chaire d'informatique du Collège de France attribuée à Yann LeCun, victoire du système d'intelligence artificielle AlphaGo créé par DeepMind sur le champion de go, Lee Sedol, et ainsi de suite, tout au long de l'année : les initiatives en matière d'intelligence artificielle se sont multipliées à un rythme effréné. Impossible d'en faire l'inventaire !

Après l'irruption de l'intelligence artificielle dans le débat public en 2015, 2016 et le premier trimestre 2017 ont été jalonnés de nombreux rapports sur l'intelligence artificielle, émanant du Parlement européen, de la Maison blanche, de la Chambre des communes, de l'Association mondiale des ingénieurs électriciens et électroniciens, de la Commission de réflexion sur l'éthique de la recherche en sciences et technologies du numérique de l'alliance du numérique (CERNA), de l'INRIA, de l'Institut Mines-Télécom, du Club informatique des grandes entreprises françaises (CIGREF), du Syndicat des machines et technologies de production (SYMOP), de l'Association française pour l'intelligence artificielle (AFIA), de l'Association française contre l'intelligence artificielle (AFCIA), etc. Des conférences d'envergure nationale ou internationale ont aussi été organisées sur le sujet par les Nations Unies, l'OCDE, la Fondation pour le futur de la vie, le Medef, l'AFIA entre autres. Enfin, l'initiative « France IA » lancée par le Gouvernement en janvier 2017 s'est accompagnée de l'annonce d'un plan national pour l'intelligence artificielle, dont nous attendons le détail d'ici la fin du mois.

Face à cet emballement, alors que les progrès se font à une vitesse exponentielle et reposent de plus en plus sur un financement privé aux moyens considérables, il est indispensable que la réflexion soit conduite de manière sereine et rationnelle, afin de mettre en avant la réalité des connaissances, les opportunités tout autant que les risques, afin aussi de rassurer le public et de démystifier les représentations biaisées. Comme le disait Marie Curie, « dans la vie, rien n'est à craindre, tout est à comprendre ».

Les progrès en intelligence artificielle posent des questions auxquelles toute la société doit être sensibilisée : quelles sont les opportunités et les risques qui se dessinent ? La France et l'Europe sont-elles dans une position satisfaisante dans la course mondiale ? Quelles places respectives assigner à la recherche publique et à la recherche privée ? Quelle coopération entre la recherche publique et la recherche privée ? Quelles priorités pour les investissements dans la recherche en intelligence artificielle ? Quels principes éthiques, juridiques et politiques doivent encadrer ces technologies ? La régulation doit-elle se placer au niveau national, européen ou international ?

Le débat public ne peut pas s'engager sereinement dans l'ignorance des technologies mises en oeuvre, des méthodes scientifiques et des principes de l'intelligence artificielle. Nous avons donc entendu faire l'état de la recherche et des usages des technologies d'intelligence artificielle, en constante évolution. Nous nous sommes interrogés sur la façon d'assurer le respect de règles éthiques dans la recherche en IA et au-delà, parce que « science sans conscience n'est que ruine de l'âme », ainsi que l'affirmait Rabelais.

Suite à l'adoption de l'étude de faisabilité le 28 juin 2016, nos auditions et déplacements ont commencé en septembre 2016 ; tous deux renouvelables, nous avons dû interrompre nos investigations le mois dernier. Soit une période utile d'environ six mois : nous avons donc dû préciser un champ d'investigations, en ayant le souci d'optimiser la plus-value relative du rapport, répondre à la saisine de la commission des affaires économiques du Sénat et faire mieux connaître l'intelligence artificielle. Les enjeux sont tout autant scientifiques et technologiques que politiques, philosophiques, éthiques, juridiques, éducatifs, médicaux, militaires ou, encore, économiques. Nous avons dû choisir.

Les aspects scientifiques et technologiques constituant le coeur de métier de l'OPECST, c'est la recherche publique et privée en intelligence artificielle qui a été retenue, tout comme les enjeux philosophiques, éthiques, politiques, juridiques et éducatifs, car ils soulèvent des questions essentielles - y répondre devrait aider à dépasser les peurs et les inquiétudes pour engager un débat public plus serein et mieux étayé.

Les enjeux financiers, économiques et industriels n'ont pas été écartés, mais sont mis au second plan car ils correspondent moins directement à la plus-value spécifique de l'OPECST. Enfin, les usages de l'intelligence artificielle pour la défense, les technologies militaires et la médecine ont été écartés.

Nous avons mis l'accent sur les enjeux éthiques, car ils permettent d'aborder les sujets de manière transversale. La méthode de travail a été fondée sur des auditions et des déplacements en France et à l'étranger, présentés en annexe du rapport. Nous avons aussi eu une journée de tables rondes.

Le rapport contient une histoire et même une « préhistoire » assez détaillée de l'intelligence artificielle et des technologies rattachées. L'intelligence artificielle a fêté l'année dernière son soixantième anniversaire, puisqu'elle a été inventée en tant que discipline et en tant que concept en 1956 lors d'une école d'été à Dartmouth. La conférence affirme que « chaque aspect de l'apprentissage ou toute autre caractéristique de l'intelligence peut être si précisément décrit qu'une machine peut être conçue pour le simuler ». Le projet n'est pas de construire une machine rivalisant avec l'homme mais de simuler telle ou telle tâche que l'on réserve à l'intelligence humaine. Face à l'emballement des prises de position médiatisées, il n'est pas inutile de le rappeler...

Le concept a fait l'objet d'un débat. Le choix du nom a sans doute été motivé par une quête de visibilité de ce nouveau champ de recherche. « Intelligence artificielle » a pu apparaître plus séduisant que « sciences et technologies du traitement de l'information ». mais l'anthropomorphisme essentialiste qui s'est exprimé dans ce choix n'a sans doute pas contribué à apaiser les peurs suscitées par le projet prométhéen de construction d'une machine rivalisant avec l'intelligence humaine.

L'intelligence artificielle repose sur l'utilisation d'algorithmes, suites finies et non ambiguës d'opérations ou d'instructions permettant, à l'aide d'entrées, de résoudre un problème ou d'obtenir un résultat, ces sorties étant réalisées selon un certain rendement. Les algorithmes peuvent, en effet, servir à calculer, à gérer des informations, à analyser des données, à communiquer, à commander un robot, à fabriquer des biens ou, encore, à modéliser et simuler - comme le font certains outils de météorologie, de sismologie, d'océanographie, de planétologie, d'urbanisme,...

L'informatique traite plutôt de questions résolues par des algorithmes connus, alors que l'on applique le label d'« intelligence artificielle » à des applications permettant plutôt de résoudre des problèmes moins évidents pour lesquels aucun algorithme satisfaisant n'existe encore.

Le paradoxe résultant de cette définition est le suivant : dès que le problème a été résolu par une technologie dite d'intelligence artificielle, l'activité correspondante n'est plus considérée comme une preuve d'intelligence de la machine. Les cas connus de résolutions de problèmes d'algèbre ou de capacité à jouer à des jeux (des jeux d'échecs ou de Go par exemple) illustrent ce phénomène. Nick Bostrom explique ainsi que « beaucoup d'intelligence artificielle de pointe a filtré dans des applications générales, sans y être officiellement rattachée car dès que quelque chose devient suffisamment utile et commun, on lui retire l'étiquette d'intelligence artificielle ».

Les progrès en matière d'intelligence artificielle étant tangibles depuis les années cinquante, les frontières de l'intelligence artificielle sont donc sans cesse repoussées et ce qui était appelé intelligence artificielle hier n'est donc plus nécessairement considéré comme tel aujourd'hui.

Dès l'origine, l'intelligence artificielle est une étiquette. Ce label recouvre en réalité des technologies diverses, qui traduisent la variété des formes d'intelligence en général : elles vont de formes explicites (systèmes experts et raisonnements logiques et symboliques) à des formes plus implicites (réseaux bayésiens et surtout réseaux de neurones et deep learning). Nous avons voulu retracer dans le rapport, de manière inédite, la richesse et la diversité de ces technologies.

De manière caricaturale, on pourrait résumer les technologies d'intelligence artificielle à un champ de recherche où cohabitent deux grands types d'approches : les approches symboliques et les approches connexionnistes.

Nous notons que « l'âge d'or de l'IA » qui court de 1956 au début des années soixante-dix, est marqué par les approches symboliques et les raisonnements logiques, qui sont de nombreux types et sont tous décrits dans le rapport. Cet âge d'or a été suivi d'un premier « hiver de l'intelligence artificielle » dans la décennie soixante-dix : les financements sont revus à la baisse, suite à divers rapports assez critiques, les prédictions exagérément optimistes des débuts ne se réalisant pas et les techniques ne fonctionnant que dans des cas simples.

Ce constat témoigne du caractère cyclique des investissements en intelligence artificielle selon une boucle « espoirs-déceptions », et l'enthousiasme se renouvelle dans les années quatre-vingt autour des systèmes experts, de leurs usages et de l'ingénierie des connaissances. Suit un nouvel hiver de l'intelligence artificielle dans les années quatre-vingt-dix.

Pour autant, des découvertes scientifiques sont faites dans la période. Après la renaissance de l'intérêt pour les réseaux de neurones artificiels avec de nouveaux modèles théoriques de calculs, les années quatre-vingt-dix voient se développer la programmation génétique ainsi que les systèmes multi-agents ou l'intelligence artificielle distribuée.

De très nombreux autres domaines et technologies d'intelligence artificielle peuvent être ajoutés à ceux déjà mentionnés : les machines à vecteur de support (SVM), l'apprentissage machine dont l'apprentissage par renforcement, la programmation par contraintes, les raisonnements à partir de cas, les logiques de description, les algorithmes génétiques, la recherche dans les espaces d'états, la planification, les ontologies, les logiques de description... tous ces exemples analysés de manière détaillée dans le rapport visent à illustrer la variété et la richesse qui se cache derrière le label « intelligence artificielle » : les technologies d'intelligence artificielle sont en fait quasi-innombrables ; surtout, les chercheurs, tels des artisans, hybrident des solutions inédites au cas par cas, en fonction de leur tour de main personnel.

Le tableau académique international des domaines de l'intelligence artificielle retient cinq domaines : traitement du langage naturel, vision, apprentissage automatique, systèmes multi-agents, robotique. Nous renvoyons au rapport pour plus de détails. C'est une histoire passionnante !

Faisons un focus sur l'apprentissage machine, au coeur des débats actuels. La difficulté liée aux algorithmes classiques réside dans le fait que l'ensemble des comportements possibles d'un système, compte tenu de toutes les entrées possibles, devient rapidement trop complexe à décrire. Cette explosion combinatoire justifie de confier à des programmes le soin d'ajuster un modèle adaptatif permettant de gérer cette complexité et de l'utiliser de manière opérationnelle en prenant en compte l'évolution de la base des informations pour lesquelles les comportements en réponse ont été validés. C'est ce que l'on appelle l'apprentissage automatique ou machine learning, qui permet d'apprendre et d'améliorer le système d'analyse ou de réponse. En ce sens, on peut dire que ces types particuliers d'algorithmes apprennent.

Un apprentissage est dit « supervisé » lorsque le réseau est forcé à converger vers un état final précis, en même temps qu'un motif lui est présenté. À l'inverse, lors d'un apprentissage « non-supervisé », le réseau est laissé libre de converger vers n'importe quel état final lorsqu'un motif ou un élément lui est présenté.

Entre ces deux extrêmes, l'apprentissage automatique ou machine learning peut être semi-supervisé ou partiellement supervisé. C'est le cas dans de nombreuses applications.

L'apprentissage automatique peut lui-même reposer sur plusieurs méthodes : l'apprentissage par renforcement, l'apprentissage par transfert, ou, encore, l'apprentissage profond, qui est le plus en pointe aujourd'hui. Le « deep learning » rencontre un succès particulièrement remarquables dans la présente décennie. Pourtant cette méthode est ancienne. Son essor doit beaucoup à l'émergence récente de données massives ou big data, et à l'accélération de la vitesse de calcul des processeurs, mais son histoire remonte aux années quarante : les « réseaux de neurones artificiels » sont imaginés dès cette époque.

Un réseau de neurones artificiels est la modélisation d'un ensemble d'éléments interconnectés, chacun ayant des entrées et des sorties numériques. Le comportement d'un neurone artificiel dépend de la somme pondérée de ses valeurs d'entrée. Si cette somme dépasse un certain seuil, la sortie prend une valeur positive, sinon elle reste nulle. Un réseau peut comporter une couche d'entrée (les données), une de sortie (les résultats), et une ou plusieurs couches intermédiaires.

Cet apprentissage permet d'ajuster les poids synaptiques afin que les correspondances entre les entrées et les sorties soient les meilleures possible. Il s'agit donc de combiner de nombreuses fonctions simples pour former des fonctions complexes et d'apprendre les liens entre ces fonctions simples à partir d'exemples étiquetés.

Il ne s'agit en aucun cas de réseaux de neurones de synthèse, ce n'est qu'une image, sans doute malheureuse car elle entretient une forme de confusion, en lien avec la notion d'intelligence artificielle. L'analogie avec le fonctionnement du cerveau humain repose sur le fait que les fonctions simples rappellent le rôle joué par les neurones, tandis que les connexions rappellent les synapses. Certains chercheurs préfèrent ainsi parler de neurones électroniques et de synapses électroniques.

Outre les réseaux multi-couches, d'importantes découvertes en apprentissage profond remontent aux années quatre-vingt, telles que la rétropropagation du gradient. L'idée générale de la rétropropagation consiste à rétropropager l'erreur commise par un neurone à ses synapses et aux neurones qui y sont reliés. Il s'agit en effet de faire converger l'algorithme de manière itérative vers une configuration optimisée des poids synaptiques.

En apprentissage profond, qui repose donc sur des réseaux de neurones profonds (deep neural networks), les réseaux de neurones artificiels peuvent donc être à apprentissage supervisé ou non (ils sont le plus souvent supervisés, comme dans le cas du Perceptron), avec ou sans rétropropagation (back propagation) et on peut distinguer les technologies selon la manière particulière d'organiser les neurones en réseau : les réseaux peuvent être en couches, tel les architectures profondes ou multicouches (plusieurs dizaines ou centaines de couches), dans lesquels chaque neurone d'une couche est connecté à tous les neurones de la couche précédente et de la couche suivante (c'est la structure la plus fréquente) ; les réseaux peuvent être totalement interconnectés (« réseaux de Hopfield » et « machines de Boltzmann ») ; les réseaux peuvent permettre de prendre en compte le contexte tel une mémoire, avec le cas des réseaux neuronaux récurrents ; enfin, les réseaux peuvent se chevaucher, un peu comme dans le calcul matriciel, à l'instar des réseaux neuronaux à convolution.

Nous ne disposons d'aucune explication théorique des raisons pour lesquelles les réseaux de neurones fonctionnent aussi bien, c'est-à-dire donnent, dans un certain nombre de domaines, d'excellents résultats. La technologie devance donc la science en la matière : c'est à la recherche d'éclaircir ce sujet...

Les technologies disponibles en intelligence artificielle peuvent se combiner entre elles : les combinaisons et les hybridations sont quasi-systématiques, le programme AlphaGo de Google-DeepMind a ainsi appris à jouer au jeu de go par une méthode de deep learning couplée à un apprentissage par renforcement et à une optimisation selon la méthode Monte-Carlo, qui repose sur le hasard.

De plus en plus, les outils d'intelligence artificielle sont utilisés conjointement. Par exemple, les systèmes experts sont utilisés avec le raisonnement par analogie, éventuellement dans le cadre de systèmes multi-agents. De même, les SVM et l'apprentissage par renforcement se combinent très efficacement avec l'apprentissage profond des réseaux de neurones. Le deep learning, peut aussi s'enrichir de logiques floues ou d'algorithmes génétiques.

Derrière le concept d'intelligence artificielle, ce sont des technologies très variées qui donnent lieu à des applications spécifiques pour des tâches toujours très spécialisées. Les applications sectorielles présentes ou futures sont d'envergure considérable, que l'on pense par exemple aux transports, à l'aéronautique, à l'énergie, à l'environnement, à l'agriculture, au commerce, à la finance, à la défense, à la sécurité, à la sécurité informatique, à la communication, à l'éducation, aux loisirs, à la santé, à la dépendance ou au handicap.

Il s'agit d'autant de jalons d'applications sectorielles, dont le rapport retrace les possibilités, nous y renvoyons donc. Le potentiel de ces technologies est immense et ouvre de manière transversale un espace d'opportunités inédit : nos économies peuvent en bénéficier car les champs d'application sont et seront de plus en plus nombreux. Ces technologies sont non seulement en évolution constante, mais leurs combinaisons ouvrent de nouvelles perspectives.

Selon Stéphane Mallat, professeur à l'École normale supérieure, il s'agit d'« une rupture non seulement technologique, mais aussi scientifique ». Traditionnellement, les modèles sont construits par les chercheurs eux-mêmes à partir de données d'observation, en n'utilisant guère plus de dix variables alors que « les algorithmes d'apprentissage sélectionnent seuls le modèle optimal pour décrire un phénomène à partir d'une masse de données » et avec une complexité inatteignable pour nos cerveaux humains, puisque cela peut représenter jusqu'à plusieurs millions de variables, contre une dizaine pour un laboratoire humain. Alors que le principe de base de la méthode scientifique réside dans le fait que les modèles ou les théories sont classiquement construits par les chercheurs à partir des observations, le deep learning change la donne en assistant et amplifiant l'expertise scientifique dans la construction des modèles.

Denis Girou, directeur de l'Institut du développement et des ressources en informatique scientifique au CNRS estime que « la science a pu construire des modèles de plus en plus complexes grâce à l'augmentation de la puissance de calcul des outils informatiques, au point que la simulation numérique est désormais considérée comme le troisième pilier de la science après la théorie et l'expérience ».

Selon Yann LeCun, le défi scientifique auquel les chercheurs doivent s'atteler c'est celui de l'apprentissage non supervisé. Dans sa leçon inaugurale au Collège de France, il estime ainsi que « tant que le problème de l'apprentissage non-supervisé ne sera pas résolu, nous n'aurons pas de machines vraiment intelligentes. C'est une question fondamentale scientifique et mathématique, pas une question de technologie. Résoudre ce problème pourra prendre de nombreuses années ou plusieurs décennies. À la vérité, nous n'en savons rien ».

L'intelligence artificielle, qui agit sur la base de ce qu'elle sait, devra donc relever le défi d'agir sans savoir, puisque comme l'affirmait le biologiste, psychologue et épistémologue Jean Piaget « L'intelligence, ça n'est pas ce que l'on sait, mais ce que l'on fait quand on ne sait pas ». J'y insiste, ce que sait l'intelligence artificielle, c'est l'homme qui le lui a appris.

Aucun commentaire n'a encore été formulé sur cette intervention.

Inscription
ou
Connexion